Answer ALL questions.

Write your answers in the spaces provided.
You must write down all the stages in your working.

1 Write 16734 correct to the nearest thousand.

(Total for Question 1 is $\mathbf{1}$ mark)

2 Write 0.9 as a fraction.

(Total for Question 2 is 1 mark)

3 Change 950 centimetres into metres.

$$
\begin{aligned}
& 100 \mathrm{~cm}=1 \mathrm{~m} \\
& 950 \mathrm{~cm}=9.5 \mathrm{~m}
\end{aligned}
$$

metres
(Total for Question 3 is $\mathbf{1}$ mark)
$4 \quad$ Simplify $7 \times 2 g$

$$
7 \times 2=14
$$

(Total for Question 4 is 1 mark)

5 Here is a list of numbers.
$60 \quad 7590120 \quad 150$

One of these numbers is a multiple of 45
Which number?

\qquad
(Total for Question 5 is $\mathbf{1}$ mark)

6 Susan has a fair ordinary dice.
She rolls the dice once.
(a) On the probability scale, mark with a cross (\times) the probability that Shari gets a number between less than 7 .

(b) On the probability scale, mark with a cross (\times) the probability that Susan gets an odd number.

$\frac{3}{6}=\frac{1}{2}$

7 Here is a triangle.

(a) Measure the length of $B C$.

(b) Measure the size of angle A.

${ }^{\circ}$

Here is a different triangle.

$Q P=Q R=P R$
(c) Write down the mathematical name of this triangle.

8 The diagram shows three motorway service stations P, Q and R on a map.

The map has a scale of $1 \mathrm{~cm}=6 \mathrm{~km}$.
Work out the real distance from P to R.

Total length P to $R=30 \mathrm{~cm}$

\qquad

9 Here are the first five terms of a sequence.

$$
2_{7}^{\frac{2}{9}} 7^{16} 7^{\frac{3}{23}}{ }^{16}
$$

(a) Write down the next term of this sequence.

$$
30+7
$$

\qquad 37
(b) Write down the ratio of the second term to the fifth term.

Give your ratio in its simplest form.

\qquad

10 This graph can be used to find the cost of hiring a boat on a lake for up to 12 hours.

(a) Use the graph to find the cost of hiring a boat for 6 hours.
\qquad

Michael hires a boat at 0900 in the morning.
When he returns the boat he has to pay $£ 12$
(b) At what time does Michael return the boat?

(3)
(Total for Question 10 is $\mathbf{4}$ marks)

11 The table shows information about the weights of the people in a gymnasium.

Weight	Number of people
40 kg	2
50 kg	3
60 kg	5
70 kg	6
80 kg	4
90 kg	2

Show that the total weight of the people in the gymnasium is more than 1500 kg .

12 Shape \mathbf{A} is reflected in a mirror line to give shape \mathbf{B}.

(a) On the grid, draw the mirror line.
(b) Andrew is asked to reflect shape \mathbf{P} in the x-axis. Here is the diagram Andrew draws.

Explain the mistake Andrew has made.
........he....has...neflected...n....the...y.ax.ls..........................axis.)
\qquad
\qquad

13 There are 65 doctors in a hospital.
This is $\frac{1}{15}$ of the total number of people in the hospital.
Work out the total number of people in the hospital.
65 doctors $=\frac{1}{15}$

\qquad

14 Bricks are put into crates.

Crate

Each brick is a cuboid, 90 mm by 60 mm by 30 mm .
Each crate is a cuboid, 72 cm by 42 cm by 27 cm .
Work out the greatest number of bricks that can be put into each crate.
Back Volume $=3 \times 6 \times 9$

$$
=162 \mathrm{~cm}^{3}
$$

Crate Volume $=27 \times 42 \times 72$

$$
=81648 \mathrm{~cm}^{3}
$$

Greatest number $=\frac{81648}{162}=504$

15 Here is a fair ordinary dice and a fair 8-sided spinner.

Sammy throws the dice once and spins the spinner once.
Is Sammy more likely to get
a number less than 5 on the dice $1,2,3,4$ or a number greater than 3 on the spinner? $4,5,6,7,8$
You must show all your working.

Duce.

($x 4$)
$\frac{16}{24}$

Spinner

$\frac{5}{8}$
(×3)

$$
\frac{15}{24}
$$

$$
\frac{16}{24}>\frac{15}{24}
$$

16 David drives at an average speed of $44 \mathrm{~km} / \mathrm{h}$ for 2 hours 15 minutes.
Work out the distance David drives.

$$
\begin{aligned}
& 44 \mathrm{~km}=1 \text { hour } \\
& \div 4 \mathrm{~km}=15 \text { minsk } \\
& 11 \mathrm{~km} \\
& 88 \mathrm{~km}=2 \text { hours }
\end{aligned}
$$

so 2 hours 15 ming $=88+11$

$$
=99
$$

\qquad

17 There are 4 theatres $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}.
The mean number of seats per theatre is 380
There are 375 seats in theatres \mathbf{A}.
There are 225 seats in theatres B.
There are 470 seats in theatres C.
Work out the number of seats in theatres \mathbf{D}.

D

1520-1070 $=450$
(Total for Question 17 is $\mathbf{4}$ marks)

18 Aston buys 270 chocolate bars.
The chocolate bars are sold in packs.
There are 15 chocolate bars in each pack.
Each pack costs $£ 4$
(a) Work out the total cost of the chocolate bars Aston buys.

Packs

$270 \div 15$
e
18
packs
Cost
$18 \times £ 4=£ 72$
£.... 72
(3)

Ellie buys 36 cartons of juice for $£ 25$
There are $350 \mathrm{~m} l$ of juice in each carton.
(b) Work out the cost of $200 \mathrm{~m} l$ of juice.

Give your answer correct to the nearest penny.

$$
\begin{aligned}
36 \text { cartans } & =£ 25 \\
\times 350 & \\
12600 \mathrm{ml} & =£ 25 \mathrm{~L} 2500 \mathrm{p} \\
\div 126 & \div 126 \\
100 \mathrm{ml} & =19.84 \ldots \mathrm{p} \\
\times 2 & \times 6 \\
200 \mathrm{me} & =39.682 \ldots \mathrm{p}
\end{aligned}
$$

19140 people attend an open air concert.
Of these people
80 wear a coat
35 wear a hat
25 of the people who wear a hat do not wear a coat.
(a) Use this information to complete the frequency tree.

(b) What percentage of the 80 people who wear a coat do not wear a hat?

20 (a) Work out the value of $\frac{\sqrt{1577}-32}{2.3^{2}-5}$
Write down all the figures on your calculator display.

(b) Work out the value of the reciprocal of 0.8

21 Write 84 as a product of its prime factors.

$$
\begin{aligned}
84 & =4 \times 21 \\
& =2 \times 2 \times 3 \times 7
\end{aligned}
$$

22 There are 48 counters in a bag.
There are only blue counters and green counters in the bag.

$$
\text { number of blue counters : number of green counters }=1: 3
$$

Hermione has to work out how many blue counters are in the bag.
She says,
"There are 16 blue counters in the bag because 1 is a third of 3 and 16 is a third of 48 " Is Hermine correct?
You must give a reason for your answer.

$23-3<n \leq 7$
n is an integer.
(a) Write down the greatest possible value of n.

(b) On the number line below, show the inequality $-5<m \leq 2$

(c) Solve $\frac{4}{5} h-6<10$

$$
\begin{aligned}
& \frac{4}{5} h-6<10 \\
& +6 \\
& \frac{4}{5} h<16
\end{aligned}
$$

$$
n<\frac{16 \times 5}{4}
$$

$$
h<20
$$

24 Here is a triangle and a rectangle.

All measurements are in centimetres.
The area of the triangle is $18 \mathrm{~cm}^{2}$ greater than the area of the rectangle.
Work out the value of x.

$$
\begin{aligned}
\Delta=\frac{1}{2} 7 \times 5 x & =4(3 x+1) \\
& =17.5 x \\
17.5 x & =12 x+4 \\
5 \cdot 5 x & =22 \\
x & =\frac{22}{5 \cdot 5} \\
& =4
\end{aligned}
$$

$$
\begin{equation*}
x= \tag{4}
\end{equation*}
$$

25 Last month a farmer sold 900 kg of vegetables.
65% of these vegetables were turnips and parsnips.
weight of turnips : weight of parsnips $=9: 4$
Calculate the weight of parnsips the farmer sold.

0.65×900

$$
=585
$$

$$
\begin{array}{ll}
9 \times 45 & 4 \times 45 \\
=405 & =180
\end{array}
$$

kg

26 A number, d, is rounded to 2 decimal places.
The result is 2.73
Complete the error interval for d.
2.72

2.74
2.725
$\leq d<$ \qquad

27 Ronnie buys a house with a value of $£ 280000$
The value of Ronnie's house increases by 2.5% each year. 1.025
Tom buys a house with a value of $£ 260000$
The value of Tom's house increases by 6% each year. b. 06
At the end of 2 years, whose house has the greater value?
You must show how you get your answer.
Ronnie $280000 \times 1.025^{2}=£ 294175$
Tom $260000 \times 1.06^{2}=£ 292136$
Ronnes house has the greater value
$294175>292136$

Here are five graphs.

A

B

C

D

E

Equation	Graph
$y=\frac{2}{x}$	C
$y=x+4$	A
$y=6-3 x$	C
$y=x^{3}-3$	B

Match the letter of each graph with its equation.

